Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Nat Commun ; 14(1): 7145, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932294

RESUMO

The outstanding acuity of the mammalian ear relies on cochlear amplification, an active mechanism based on the electromotility (eM) of outer hair cells. eM is a piezoelectric mechanism generated by little-understood, voltage-induced conformational changes of the anion transporter homolog prestin (SLC26A5). We used a combination of molecular dynamics (MD) simulations and biophysical approaches to identify the structural dynamics of prestin that mediate eM. MD simulations showed that prestin samples a vast conformational landscape with expanded (ES) and compact (CS) states beyond previously reported prestin structures. Transition from CS to ES is dominated by the translational-rotational movement of prestin's transport domain, akin to elevator-type substrate translocation by related solute carriers. Reversible transition between CS and ES states was supported experimentally by cysteine accessibility scanning, cysteine cross-linking between transport and scaffold domains, and voltage-clamp fluorometry (VCF). Our data demonstrate that prestin's piezoelectric dynamics recapitulate essential steps of a structurally conserved ion transport cycle.


Assuntos
Cisteína , Células Ciliadas Auditivas Externas , Animais , Células Ciliadas Auditivas Externas/metabolismo , Cisteína/metabolismo , Ânions/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Mamíferos/metabolismo
2.
J Chin Med Assoc ; 86(12): 1101-1108, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820291

RESUMO

BACKGROUND: Hearing loss is a global health issue and its etiopathologies involve complex molecular pathways. The ubiquitin-proteasome system has been reported to be associated with cochlear development and hearing loss. The gene related to anergy in lymphocytes ( GRAIL ), as an E3 ubiquitin ligase, has not, as yet, been examined in aging-related and noise-induced hearing loss mice models. METHODS: This study used wild-type (WT) and GRAIL knockout (KO) mice to examine cochlear hair cells and synaptic ribbons using immunofluorescence staining. The hearing in WT and KO mice was detected using auditory brainstem response. Gene expression patterns were compared using RNA-sequencing to identify potential targets during the pathogenesis of noise-induced hearing loss in WT and KO mice. RESULTS: At the 12-month follow-up, GRAIL KO mice had significantly less elevation in threshold level and immunofluorescence staining showed less loss of outer hair cells and synaptic ribbons in the hook region compared with GRAIL WT mice. At days 1, 14, and 28 after noise exposure, GRAIL KO mice had significantly less elevation in threshold level than WT mice. After noise exposure, GRAIL KO mice showed less loss of outer hair cells in the cochlear hook and basal regions compared with WT mice. Moreover, immunofluorescence staining showed less loss of synaptic ribbons in the hook regions of GRAIL KO mice than of WT mice. RNA-seq analysis results showed significant differences in C-C motif chemokine ligand 19 ( CCL19 ), C-C motif chemokine ligand 21 ( CCL21 ), interleukin 25 ( IL25 ), glutathione peroxidase 6 ( GPX6 ), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 ( NOX1 ) genes after noise exposure. CONCLUSION: The present data demonstrated that GRAIL deficiency protects against aging-related and noise-induced hearing loss. The mechanism involved needs to be further clarified from the potential association with synaptic modulation, inflammation, and oxidative stress.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Camundongos , Envelhecimento/fisiologia , Limiar Auditivo/fisiologia , Quimiocinas/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Técnicas de Inativação de Genes , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Provocada por Ruído/prevenção & controle , Ligantes , Ruído/efeitos adversos
3.
Curr Opin Neurobiol ; 81: 102745, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356371

RESUMO

The auditory organ cochlea harbors two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs), which are innervated by spiral (auditory) ganglion neurons (SGNs). Recent transcriptomic, epigenetic, and genetic studies have started to reveal various aspects of cochlear development, including how prosensory progenitors are specified and diversified into IHCs or OHCs, as well as the heterogeneity among SGNs and how SGN subtypes are formed. Here, we primarily review advances in this line of research over the past five years and discuss a few key studies (from the past two years) to elucidate (1) how prosensory progenitors are specified; (2) the cis-regulatory control of Atoh1 expression and the synergistic interaction between Atoh1 and Pou4f3; and (3) the essential roles of Insm1 and Ikzf2 in OHC development and Tbx2 in IHC development. Moreover, we highlight the contribution of recent molecular studies on cochlear development toward the goal of regenerating IHCs and OHCs, which holds considerable potential for application in treating human deafness. Lastly, we briefly summarize the most recent progress on uncovering when and how SGN diversity is generated.


Assuntos
Cóclea , Células Ciliadas Auditivas Internas , Humanos , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Externas/metabolismo , Neurônios/metabolismo , Transcriptoma
4.
Cell Rep ; 42(5): 112504, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37171961

RESUMO

The cochlea harbors two types of sound receptors, outer hair cells (OHCs) and inner hair cells (IHCs). OHCs transdifferentiate into IHCs in Insm1 mutants, and OHCs in Ikzf2-deficient mice are dysfunctional and maintain partial IHC gene expression. Insm1 potentially acts as a positive but indirect regulator of Ikzf2, considering that Insm1 is expressed earlier than Ikzf2 and primarily functions as a transcriptional repressor. However, direct evidence of this possibility is lacking. Here, we report the following results: first, Insm1 overexpression in IHCs leads to ectopic Ikzf2 expression. Second, Ikzf2 expression is repressed in Insm1-deficient OHCs, and forced expression of Ikzf2 mitigates the OHC abnormality in Insm1 mutants. Last, dual ablation of Insm1 and Ikzf2 generates a similar OHC phenotype as does Insm1 ablation alone. Collectively, our findings reveal the transcriptional cascade from Insm1 to Ikzf2, which should facilitate future investigation of the molecular mechanisms underlying OHC development and regeneration.


Assuntos
Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
5.
Neurosci Bull ; 39(12): 1762-1774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37233921

RESUMO

The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.


Assuntos
Cóclea , Células Ciliadas Auditivas Internas , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Modelos Animais de Doenças , Fator 8 de Crescimento de Fibroblasto/metabolismo
6.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37096733

RESUMO

GIPC3 has been implicated in auditory function. Here, we establish that GIPC3 is initially localized to the cytoplasm of inner and outer hair cells of the cochlea and then is increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at 1 month of age. Cuticular plates of Gipc3KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks and the cuticular plate. Several of immunoprecipitated proteins contained GIPC family consensus PDZ-binding motifs (PBMs), including MYO18A, which bound directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell junction proteins to shape the cuticular plate.


Assuntos
Mecanotransdução Celular , Domínios PDZ , Camundongos , Animais , Células Ciliadas Auditivas Internas/metabolismo , Citoesqueleto/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miosinas/genética , Miosinas/metabolismo
7.
PLoS Biol ; 21(3): e3002041, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947567

RESUMO

Our sense of hearing is mediated by sensory hair cells, precisely arranged and highly specialized cells subdivided into outer hair cells (OHCs) and inner hair cells (IHCs). Light microscopy tools allow for imaging of auditory hair cells along the full length of the cochlea, often yielding more data than feasible to manually analyze. Currently, there are no widely applicable tools for fast, unsupervised, unbiased, and comprehensive image analysis of auditory hair cells that work well either with imaging datasets containing an entire cochlea or smaller sampled regions. Here, we present a highly accurate machine learning-based hair cell analysis toolbox (HCAT) for the comprehensive analysis of whole cochleae (or smaller regions of interest) across light microscopy imaging modalities and species. The HCAT is a software that automates common image analysis tasks such as counting hair cells, classifying them by subtype (IHCs versus OHCs), determining their best frequency based on their location along the cochlea, and generating cochleograms. These automated tools remove a considerable barrier in cochlear image analysis, allowing for faster, unbiased, and more comprehensive data analysis practices. Furthermore, HCAT can serve as a template for deep learning-based detection tasks in other types of biological tissue: With some training data, HCAT's core codebase can be trained to develop a custom deep learning detection model for any object on an image.


Assuntos
Cóclea , Células Ciliadas Vestibulares , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Audição
8.
Proc Natl Acad Sci U S A ; 120(11): e2217891120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893263

RESUMO

Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.


Assuntos
Proteínas de Transporte de Ânions , Proteínas , Camundongos , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Mamíferos/metabolismo , Ânions/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo
9.
PLoS One ; 18(1): e0273586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689403

RESUMO

Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness.


Assuntos
Actinas , Perda Auditiva , Humanos , Camundongos , Animais , Forminas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo
10.
Cell Tissue Res ; 391(1): 43-54, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36287265

RESUMO

Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.


Assuntos
Cóclea , Proteína HMGB1 , Perda Auditiva Provocada por Ruído , Ruído , Animais , Camundongos , Cóclea/metabolismo , Cóclea/patologia , Citoplasma/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Proteína HMGB1/metabolismo , Ruído/efeitos adversos
11.
Hum Mol Genet ; 32(7): 1137-1151, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36331344

RESUMO

Mitochondrial dynamics is essential for maintaining the physiological function of the mitochondrial network, and its disorders lead to a variety of diseases. Our previous study identified mitochondrial dynamics controlled anti-tumor immune responses and anxiety symptoms. However, how mitochondrial dynamics affects auditory function in the inner ear remains unclear. Here, we show that the deficiency of FAM73a or FAM73b, two mitochondrial outer membrane proteins that mediate mitochondrial fusion, leads to outer hair cells (HCs) damage and progressive hearing loss in FVB/N mice. Abnormal mitochondrial fusion causes elevated oxidative stress and apoptosis of HCs in the early stage. Thereafter, the activation of macrophages and CD4+ T cell is found in the mutant mice with the increased expression of the inflammatory cytokines IL-12 and IFN-γ compared with control mice. Strikingly, a dramatically decreased number of macrophages by Clophosome®-A-Clodronate Liposomes treatment alleviates the hearing loss of mutant mice. Collectively, our finding highlights that FAM73a or FAM73b deficiency affects HCs survival by disturbing the mitochondrial function, and the subsequent immune response in the cochleae worsens the damage of HCs.


Assuntos
Perda Auditiva , Dinâmica Mitocondrial , Animais , Camundongos , Dinâmica Mitocondrial/genética , Audição , Perda Auditiva/genética , Perda Auditiva/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Imunidade
12.
Nat Commun ; 13(1): 7628, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494345

RESUMO

The auditory function of the mammalian cochlea relies on two types of mechanosensory hair cells and various non-sensory supporting cells. Recent studies identified the transcription factors INSM1 and IKZF2 as regulators of outer hair cell (OHC) fate. However, the transcriptional regulation of the differentiation of inner hair cells (IHCs) and their associated inner supporting cells (ISCs) has remained enigmatic. Here, we show that the expression of the transcription factor TBX2 is restricted to IHCs and ISCs from the onset of differentiation until adulthood and examine its function using conditional deletion and misexpression approaches in the mouse. We demonstrate that TBX2 acts in prosensory progenitors as a patterning factor by specifying the inner compartment of the sensory epithelium that subsequently gives rise to IHCs and ISCs. Hair cell-specific inactivation or misexpression causes transdifferentiation of hair cells indicating a cell-autonomous function of TBX2 in inducing and maintaining IHC fate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas Internas , Camundongos , Animais , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Cóclea/fisiologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Órgão Espiral/metabolismo , Mamíferos/metabolismo
13.
Hear Res ; 426: 108640, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332380

RESUMO

Measurement of the motor protein prestin offers a novel approach to assessing outer hair cell (OHC) status using serological techniques. Motivated by our prior work showing reduced serum prestin levels in healthy young adults at-risk for noise damage, the current study examined serum prestin levels, measured from circulating blood, across the age span from 18 to 82 years old. Results suggest that serum prestin levels negatively correlate with age, with young adults having higher levels of circulating serum in the blood than older adults. Group-level analyses showed minimal differences in prestin levels between 18 and 29, 30-39, and 40-49 year olds, but significant reductions in the 50+ years-old age group compared to the three younger groups, even though all groups significantly differed from each other in audiometric thresholds and distortion product otoacoustic emissions signal-to-noise ratio. Serum prestin levels declined with increasing levels of hearing loss, with a statistically significant relationship emerging between prestin and low-frequency hearing thresholds (0.25-2 kHz) but a weaker non-significant relationship for high-frequency hearing thresholds (3-8 kHz). This differential pattern between low- and high- frequency thresholds is consistent with the basal-to-apical progression of OHC loss with age. Findings support the idea that serum prestin is the product of residual OHCs in the less age-affected apical regions. Moreover, when entered in a regression model with audiometric thresholds, age was a stronger predictor than pure tone hearing threshold level for predicting serum prestin levels.


Assuntos
Células Ciliadas Auditivas Externas , Perda Auditiva , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Células Ciliadas Auditivas Externas/metabolismo , Audição , Perda Auditiva/metabolismo , Ruído/efeitos adversos , Emissões Otoacústicas Espontâneas
14.
Nat Commun ; 13(1): 6877, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371434

RESUMO

Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin's intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin's lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.


Assuntos
Cóclea , Células Ciliadas Auditivas Externas , Células Ciliadas Auditivas Externas/metabolismo , Cóclea/metabolismo , Proteínas/metabolismo , Proteínas Motores Moleculares/metabolismo , Lipídeos , Membrana Celular/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(41): e2210849119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191207

RESUMO

Transmembrane channel-like protein 1 (TMC1) is thought to form the ion-conducting pore of the mechanoelectrical transducer (MET) channel in auditory hair cells. Using single-channel analysis and ionic permeability measurements, we characterized six missense mutations in the purported pore region of mouse TMC1. All mutations reduced the Ca2+ permeability of the MET channel, triggering hair cell apoptosis and deafness. In addition, Tmc1 p.E520Q and Tmc1 p.D528N reduced channel conductance, whereas Tmc1 p.W554L and Tmc1 p.D569N lowered channel expression without affecting the conductance. Tmc1 p.M412K and Tmc1 p.T416K reduced only the Ca2+ permeability. The consequences of these mutations endorse TMC1 as the pore of the MET channel. The accessory subunits, LHFPL5 and TMIE, are thought to be involved in targeting TMC1 to the tips of the stereocilia. We found sufficient expression of TMC1 in outer hair cells of Lhfpl5 and Tmie knockout mice to determine the properties of the channels, which could still be gated by hair bundle displacement. Single-channel conductance was unaffected in Lhfpl5-/- but was reduced in Tmie-/-, implying TMIE very likely contributes to the pore. Both the working range and half-saturation point of the residual MET current in Lhfpl5-/- were substantially increased, suggesting that LHFPL5 is part of the mechanical coupling between the tip-link and the MET channel. Based on counts of numbers of stereocilia per bundle, we estimate that each PCDH15 and LHFPL5 monomer may contact two channels irrespective of location.


Assuntos
Células Ciliadas Vestibulares , Mecanotransdução Celular , Animais , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Mecanotransdução Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Estereocílios/metabolismo
16.
Nat Commun ; 13(1): 6208, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266333

RESUMO

Outer hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (PresTS), complexed with chloride, sulfate, or salicylate at 3.52-3.63 Å resolutions. The central positively-charged cavity allows flexible binding of various anion species, which likely accounts for the known distinct modulations of nonlinear capacitance (NLC) by different anions. Comparisons of these PresTS structures with recent prestin structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insights into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.


Assuntos
Proteínas de Transporte de Ânions , Cloretos , Animais , Proteínas de Transporte de Ânions/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Células Ciliadas Auditivas Externas/metabolismo , Ânions/metabolismo , Salicilatos , Sulfatos/metabolismo , Mamíferos/metabolismo
17.
Cell Calcium ; 105: 102613, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797824

RESUMO

In cochlear outer hair cells (OHCs), a network of Ca2+ channels, pumps and Ca2+-binding proteins (CaBPs) regulates the localization, spread, and magnitude of free Ca2+ ions. During early postnatal development, OHCs express three prominent mobile EF-hand CaBPs: oncomodulin (OCM), α-parvalbumin (APV) and sorcin. We have previously shown that deletion of Ocm (Ocm-/-) gives rise to progressive cochlear dysfunction in young adult mice. Here, we show that changes in Ca2+ signaling begin early in postnatal development of Ocm-/- mice. While mutant OHCs exhibit normal electrophysiological profiles compared to controls, their intracellular Ca2+ signaling is altered. The onset of OCM expression at postnatal day 3 (P3) causes a developmental change in KCl-induced Ca2+ transients in OHCs and leads to slower KCl-induced Ca2+ transients than those elicited in cells from Ocm-/- littermates. We compared OCM buffering kinetics with other CaBPs in animal models and cultured cells. In a double knockout of Ocm and Apv (Ocm-/-;Apv-/-), mutant OHCs show even faster Ca2+ kinetics, suggesting that APV may also contribute to early postnatal Ca2+ signaling. In transfected HEK293T cells, OCM slows Ca2+ kinetics more so than either APV or sorcin. We conclude that OCM controls the intracellular Ca2+ environment by lowering the amount of freely available [Ca2+]i in OHCs and transfected HEK293T cells. We propose that OCM plays an important role in shaping the development of early OHC Ca2+ signals through its inimitable Ca2+ buffering capacity.


Assuntos
Sinalização do Cálcio , Células Ciliadas Auditivas Externas , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células HEK293 , Células Ciliadas Auditivas Externas/metabolismo , Humanos , Camundongos , Parvalbuminas/metabolismo
18.
J R Soc Interface ; 19(191): 20220139, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673856

RESUMO

Outer hair cells are the cellular motors in the mammalian inner ear responsible for sensitive high-frequency hearing. Motor function over the frequency range of human hearing requires expression of the protein prestin in the OHC lateral membrane, which imparts piezoelectric properties to the cell membrane. In the present report, electrical power consumption and mechanical power output of the OHC membrane-motor complex are determined using previously published voltage-clamp data from isolated OHCs and membrane patches. Results reveal that power output peaks at a best frequency much higher than implied by the low-pass character of nonlinear capacitance, and much higher than the whole-cell resistive-capacitive corner frequency. High frequency power output is enabled by a -90° shift in the phase of electrical charge displacement in the membrane, manifested electrically as emergence of imaginary-valued nonlinear capacitance.


Assuntos
Células Ciliadas Auditivas Externas , Audição , Animais , Membrana Celular/metabolismo , Capacitância Elétrica , Células Ciliadas Auditivas Externas/metabolismo , Humanos , Mamíferos , Proteínas/metabolismo
19.
Eur J Neurosci ; 56(1): 3543-3552, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35501117

RESUMO

Previous works showed that opioid peptides are produced by olivocochlear efferent neurons, while cochlear hair cells express opioid receptors. It has been proposed that opioids protect the auditory system from damage by intense stimulation, although their use for therapeutic or illicit purposes links to hearing impairment. Therefore, it is relevant to study the effect of opioids in the auditory system to define their functional expression and mechanism of action. This study investigated the modulation of the Ca2+ currents by opioid peptides in the rat outer hair cells (OHC) using the whole-cell patch-clamp technique. The influence of agonists of the three opioid receptor subtypes (µ, δ, and κ) was studied. The κ opioid receptor agonist U-50488 inhibits the Ca2+ currents in a partially reversible form. Coincidently, norbinaltorphimine (a κ receptor antagonist) blocked the U-50488 inhibitory effect on the Ca2+ current. The δ and the µ opioid receptor agonists did not significantly affect the Ca2+ currents. These results indicate that the κ opioid receptor activation inhibits the Ca2+ current in OHC, modulating the intracellular Ca2+ concentration when OHCs depolarize. The modulation of the auditory function by opioids constitutes a relevant mechanism with a potential role in the physiopathology of auditory disturbances.


Assuntos
Receptores Opioides kappa , Receptores Opioides , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos Opioides , Animais , Cálcio/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Células Ciliadas Auditivas Externas/metabolismo , Peptídeos Opioides , Ratos , Receptores Opioides mu/agonistas
20.
Biophys J ; 121(12): 2371-2379, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35598044

RESUMO

Outer hair cell (OHC) nonlinear membrane capacitance derives from voltage-dependent sensor charge movements within the membrane protein prestin (SLC26a5) that drive OHC electromotility. The ability of the protein to influence hearing depends on its reaction to membrane receptor potentials across auditory frequency. Estimates of prestin's frequency response have been evaluated by several groups out to tens of kHz in voltage-clamped macro-patches of OHC membrane. The response is a power function of frequency that is down 40 dB at 77 kHz. Despite these observations, concerns remain that the macro-patch approach is flawed due to mechanical constraints of pipette solution column load or patch size itself. In the absence of these influences, prestin's frequency response is posited by some to be ultrasonic in nature. Here we evaluate the influence of these putative confounding factors on prestin's frequency response. We show that neither pipette column height nor negative or positive pipette pressure substantially influence total sensor charge frequency response. Additionally, patch surface area has negligible influence. We conclude that the speed of voltage-driven conformational changes in prestin within the plasma membrane is accurately assessed with the macro-patch technique, permitting investigations of membrane characteristics that can substantially alter prestin's performance bandwidth. We illustrate significant alterations in bandwidth by perturbation of membrane fluidity and chloride anion concentration. Finally, we speculate that OHC membrane characteristics may differ along the tonotopic axis of the cochlea to tune nonlinear membrane capacitance frequency cutoffs.


Assuntos
Células Ciliadas Auditivas Externas , Proteínas , Membrana Celular/metabolismo , Capacitância Elétrica , Células Ciliadas Auditivas Externas/metabolismo , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...